


Fig. 1 A Rock Pigeon (Columba livia). Credit: M. Peck.
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Neognathae (all other orders). 7 ese two major divisions 
reP ected diB erences in jaw morphology and P ight cap-
abilities (3). Paleognaths have primitive jaws reminis-
cent of non-avian theropods, while neognaths possess 
modern jaws with adaptations reP ecting diverse feeding 
modes and postcranial modiA cations related to lifestyle 
and mode of locomotion.

Early molecular phylogenies based on immuno-
logical (6) and DNA–DNA hybridization (7) distances 
supported the grouping of paleognath birds, but they 
did not support the classical deA nition of Neognathae. 
Instead of A nding penguins, loons, and grebes to be 
among the earliest diverging neognaths, those molecu-
lar studies identiA ed the waterfowl (Anseriformes) and 
gamefowl (Galliformes) as closest relatives and forming 
a group (Galloanserae) separate from other neognaths 
(Neoaves). However, the position of Galloanserae with 
respect to Neoaves and Paleognathae was not yet A rmly 
established.

DNA sequence studies over the last decade have 
addressed the relationships of avian orders and deA n-
ition of superorders. Initial studies using small subsets of 
taxa gave conP icting results. An analysis of some short 
sequences of a nuclear gene (α-crystallin) in A ve species 
joined Galliformes and Anseriformes, with a paleognath 
(tinamou) basal (8). However, initial analyses of com-
plete mitochondrial genomes in a small selection of avian 
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Abstract

Living birds (~9500 species) are grouped into 20–28 orders, 
comprising the Subclass Neornithes of the Class Aves. With 
few exceptions, molecular phylogenetic analyses have sup-
ported two morphological divisions within Neornithes, 
Paleognathae (ratites and tinamous) and Neognathae 
(all other living birds). Within Neognathae, there is uni-
versal support for the recognition of two superorders: 
Galloanserae (landfowl and waterfowl) and Neoaves (all 
other neognath orders). The neornithine timetree shows a 
Paleognathae–Neognathae split at ~120 million years ago 
(Ma) and the Galloanserae–Neoaves split at ~105 Ma, both 
possibly related to continental breakup.

Living birds are grouped in the Subclass Neornithes, 
and currently divided into three Superorders: the 
Paleognathae (ratites and tinamous), Galloanserae 
(waterfowl and gamefowl), and Neoaves (all other birds; 
Fig. 1). Based on morphological classiA cation, Neornithes 
and archaic birds are grouped together in the Class Aves, 
a subgroup of theropod dinosaurs. 7 e evolution of 
archaic avians to neornithine birds shows progressive 
loss of teeth, reduction in tail length, and modiA cation 
of feathers and limbs for powered P ight. 7 ese combined 
characteristics are not yet seen in the oldest lineage of 
birds, Archaeopteryx. However, several nonmodern birds 
also displayed remarkable P ight adaptations, particu-
larly the Cretaceous enantiornithines. Between 9000 and 
10,000 living species of birds have been described, and 
they have been placed in 20–28 orders (1, 2). Here, the 
relationships and divergence times of the three super-
orders of living birds are reviewed.

Until recently, the classiA cation of neornithine birds 
pioneered by Huxley (3) and expanded by Fürbringer 
(4) has followed the arrangement proposed by Wetmore 
(5). 7 is classiA cation is still reP ected in published 
bird guides today. In it, species were placed in two 
major groups: Paleognathae (ratites and tinamous) and 
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Fig. 2 A timetree of bird superorders. Divergence time estimates are from Table 1. Abbreviation: K (Cretaceous).
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7 e A rst study that estimated superordinal diver-
gence times with complete ordinal representation used 
a concatenated nonprotein-coding portion of the mito-
chondrial genome (two rRNAs, three tRNAs) and a lin-
eage-speciA c method (31). 7 ose time estimates agreed 
closely with estimates reported in two of three mito-
chondrial DNA studies (21, 23) (Table 1). 7 e only neor-
nithine timetree based on multiple nuclear genes (18) 
and comprehensive ordinal sampling supported a simi-
lar divergence time for the Galloanserae–Neoaves split 
(95 Ma). In summary, the neornithine timetree (Fig. 2) 
shows mid-Cretaceous diversiA cation of superorders, 
which is indirectly supported by fossil evidence (18, 23, 
29, 30) and is consistent with continental breakup and 
paleogeography (27, 32).
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Table 1. Divergence times (Ma) and their confi dence/credibility intervals (CI) among birds (Aves).

Timetree Estimates

Node Time Ref. (18)

Time

Ref. (21) Ref. (22) Ref. (23) Ref. (24)

Time

Ref. (25) Ref. (29)

  Time CI Time CI Time CI Time CI Time CI

1 119.0 – 111.0 125–96 139 154–126 110.6 125–96 101 133.2 149–115 119.0 129–108

2 105.0 95.0 99.0 112–87 122 135–110 99.1 112–87 90.0 126.0 140–112 104.0 110–99

Note: Node times in the timetree represent the mean of time estimates from different studies. Divergence times were estimated from an analysis of 
ribosomal mitochondrial genes (29), protein-coding mitochondrial genes (25), complete mitochondrial genomes (21–24), and fi ve nuclear genes (18).
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